The role of nano-sized manganese oxides in the oxygen-evolution reactions by manganese complexes: towards a complete picture.

نویسندگان

  • Mohammad Mahdi Najafpour
  • Małgorzata Hołyńska
  • Amir Nasser Shamkhali
  • Sayed Habib Kazemi
  • Warwick Hillier
  • Emad Amini
  • M Ghaemmaghami
  • Davood Jafarian Sedigh
  • Atefeh Nemati Moghaddam
  • Rahim Mohamadi
  • Sasan Zaynalpoor
  • Katrin Beckmann
چکیده

Eighteen Mn complexes with N-donor and carboxylate ligands have been synthesized and characterized. Three Mn complexes among them are new and are reported for the first time. The reactions of oxygen evolution in the presence of oxone (2KHSO5·KHSO4·K2SO4) and cerium(iv) ammonium nitrate catalyzed by these complexes are studied and characterized by UV-visible spectroscopy, X-ray diffraction spectrometry, dynamic light scattering, Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, transmission electron microscopy, scanning electron microscopy, membrane-inlet mass spectrometry and electrochemistry. Some of these complexes evolve oxygen in the presence of oxone as a primary oxidant. CO2 and MnO4(-) are other products of these reactions. Based on spectroscopic studies, the true catalysts for oxygen evolution in these reactions are different. We proposed that for the oxygen evolution reactions in the presence of oxone, the true catalysts are both high valent Mn complexes and Mn oxides, but for the reactions in the presence of cerium(iv) ammonium nitrate, the active catalyst is most probably a Mn oxide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-sized manganese oxide: a proposed catalyst for water oxidation in the reaction of some manganese complexes and cerium(IV) ammonium nitrate.

According to UV-visible spectroscopy, X-ray diffraction spectrometry, dynamic light scattering, Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy, nano-sized manganese oxides are proposed as active catalysts for water oxidation in the reaction of some manganes...

متن کامل

A very simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins.

Nano-sized particles of manganese oxides have been prepared by a very simple and cheap process using a decomposing aqueous solution of manganese nitrate at 100 °C. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectrometry have been used to characterize the phase and the morphology of the manganese oxide. The nano-sized manganese oxide shows efficient cata...

متن کامل

Sonochemical synthesis and characterization of a nano-sized Manganese (II) coordination polymer, [{Mn(NCS)2(4,4´-bipy)(H2O)2}(4,4´-bipy)]n; with 4,4'-Bipyridine (4,4'-bipy) ligand

A novel nano – sized  manganese (II) coordination polymer, [{Mn(NCS)2(L)(H2O)2}(L)]n  , (1) (L- = 4,4'-Bipyridine), have been synthesized by a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), IR spectroscopy and elemental analysis.  Direct calcination of the single crystals and nano-size...

متن کامل

Sonochemical synthesis and characterization of a nano-sized Manganese (II) coordination polymer, [{Mn(NCS)2(4,4´-bipy)(H2O)2}(4,4´-bipy)]n; with 4,4'-Bipyridine (4,4'-bipy) ligand

A novel nano – sized  manganese (II) coordination polymer, [{Mn(NCS)2(L)(H2O)2}(L)]n  , (1) (L- = 4,4'-Bipyridine), have been synthesized by a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), IR spectroscopy and elemental analysis.  Direct calcination of the single crystals and nano-size...

متن کامل

Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review.

There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 34  شماره 

صفحات  -

تاریخ انتشار 2014